Transient P2X7 receptor activation triggers macrophage death independent of Toll-like receptors 2 and 4, caspase-1, and pannexin-1 proteins.
نویسندگان
چکیده
The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.
منابع مشابه
Orphan Nuclear Receptor Nur77 Is Involved in Caspase-independent Macrophage Cell Death
Activation-induced cell death in macrophages has been observed, but the mechanism remains largely unknown. Activation-induced cell death in macrophages can be independent from caspases, and the death of activated macrophages can even be triggered by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD). Here, we show that this type of macrophage death can occur in t...
متن کاملDifferential role of pannexin-1/ATP/P2X7 axis in IL-1β release by human monocytes
IL-1β release is integral to the innate immune system. The release of mature IL-1β depends on 2 regulated events: the de novo induction of pro-IL-1β, generally via NF-κB-dependent transduction pathways; and the assembly and activation of the NLRP3 inflammasome. This latter step is reliant on active caspase-1, pannexin-1, and P2X7 receptor activation. Pathogen-associated molecular patterns in gr...
متن کاملP 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation
P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...
متن کاملPannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor.
P2X(7) receptors are ATP-gated cation channels; their activation in macrophage also leads to rapid opening of a membrane pore permeable to dyes such as ethidium, and to release of the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). It has not been known what this dye-uptake path is, or whether it is involved in downstream signalling to IL-1beta release. Here, we identify pannexin-1, a ...
متن کاملSplice variants of the P2X7 receptor reveal differential agonist dependence and functional coupling with pannexin-1.
P2X7 receptors function as ATP-gated cation channels but also interact with other proteins as part of a larger signalling complex to mediate a variety of downstream responses that are dependent upon the cell type in which they are expressed. Receptor-mediated membrane permeabilization to large molecules precedes the induction of cell death, but remains poorly understood. The mechanisms that und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 13 شماره
صفحات -
تاریخ انتشار 2012